Qualcomm AI Training Webinar // 高通AI線上訓練課程
近年AI已進入人類的生活,跨領域的應用也蓬勃興起。為協助台灣產業因應AI帶來的挑戰,台北市電腦商業同業公會(TCA)與Qualcomm高通公司合作辦理AI訓練課程,針對台灣中小企業與新創團隊提供一系列的三天的AI免費線上訓練課程,2020年12月2日至12月4日,推廣AI技術的基本知識應用,協助台灣中小企業與新創企業領先於這波先進技術中的浪潮!
課程資訊
時間:9:30AM to 5:30PM,2020年12月2日-4日(共三天)
對象:中小企業、新創團隊
費用:免費
語言:中文
主辦單位:Qualcomm高通公司
協辦單位:台北市電腦商業同業公會
聯絡人:台北市電腦公會02-25774249 分機825 李小姐、分機847 陳先生
註1. 主辦單位將審核您的報名,您需收到報名確認信才算報名成功,主辦單位會再將寄發線上課程網址。
註2. 本次開放共35名額參加,主辦單位保有學員篩選與培訓內容調整之權利。
註3. 主辦單位將向成功報名的學員收取新台幣2,000元訂金,並至少參與1次報到點名,並填寫問卷者,主辦單位將於30工作天內全數退還訂金。
註4. 報名時請務必填寫您的中文姓名以及公司Email。
12月2-4日 三日議程:
Day1 | Opening Session | Opening Speech delivered by Qualcomm | 9:30-9:35 | 5 | |
Agenda Brief | 9:35-9:40 | 5 | |||
1.0 Self-introduction by teachers and students | Teachers introduce themselves | 9:40-10:00 | 20 | ||
1.1 Introduction to AI | 1.1.1 AI: What? How? Where? | 10:00 - 10:30 a.m. | 30 | ||
1.1.2 Qualcomm AI | |||||
1.1.3 AI vs. Machine learning vs. Deep Learning | |||||
1.1.4 Different types of Machine Learning | |||||
1.1.5 Basic concepts in Machine Learning & Deep Learning | |||||
1.2 Quick Tour of Deep Learning | 1.2.1 From ML to DL: What is deep learning? | 10:30 - 11:10 a.m | 20 | ||
1.2.2 Datasets of Deep learning: From public to custom | 20 | ||||
Tea break 11:10 - 11:20 a.m. | |||||
1.2.3 Infrastructure of Deep learning: From hardware to software | 11:20 - 12:00 a.m | 40 | |||
Lunch 12:00-1:00 | |||||
Q&A, Open Discussion 13:00-13:30 | |||||
1.2.4 History, Present and Future | 1:30 - 2:30 p.m. | 10 | |||
10 | |||||
20 | |||||
20 | |||||
Tea break 2:30 - 2:40 p.m. | |||||
1.3.1 Review | Review | 2:40-2:50p.m | 10 | ||
1.3.2 Model Conversion and Demo | Hardware Preparation: AI Kit | 2:50-3:00p.m | 10 | ||
SoftWare Preparation: Part 1 SNPE SDK Development Environment Setup | 3:00-3:25p.m | 25 | |||
SoftWare Preparation: Part 2 SNPE Application Development Tools | 3:25-3:45p.m | 20 | |||
Tea break 3:45 - 3:55 p.m. | |||||
AI Demos - Object Detector Demo Converting Model | 3:55-4:15p.m | 20 | |||
AI Demos - Object Detector Run Demo | 4:15-4:30p.m | 15 | |||
1.3.3 Solve AI Problem Skills | Solve AI Problem Skills | 4:30-4:40p.m | 10 | ||
1.3.4 Homework, Q & A | Homework, Q & A | 4:40~ | - | ||
Day2 | 2.1 Foundation of Deep Learning | 2.1.1 Perceptron & Multilayer Perceptron | 9:30 - 10:00 a.m. | 10 | |
10 | |||||
2.1.2 Basic neuron layers | 10:00 - 10:30 a.m. | 20 | |||
2.1.3 Loss functions | 10:30 - 11:00 a.m | 15 | |||
2.1.4 Optimizer | 20 | ||||
10 | |||||
2.1.5 Prevent Over-fitting in Deep Learning | 11:00 - 12:00 a.m | 20 | |||
30 | |||||
| Lunch 12:00-13:00 | ||||
| Q&A, Open Discussion 13:00-13:30 | ||||
2.2 Building Deep Learning Model | 2.2.1 Classic models | 1:30 - 2:20 p.m | 10 | ||
30 | |||||
10 | |||||
2.2.2 Hyper-parameters & Tuning Tricks | 2:20 - 2:50 p.m | 10 | |||
2.2.3 Fine-tune & Transfer Learnin | 10 | ||||
2.2.4 Data pre-process & Data augmentation | 10 | ||||
2.2.5 Hands-on - Keras_MNIST | 2:50-3:00p.m | 10 | |||
Tea break 3:00 - 3:15 p.m | |||||
2.3.1 Review | Review | 3:15-3:55p.m | 10 | ||
2.3.2 SNPE Training Part 2 | An Image Classifiers Demo | 10 | |||
SNPE Introduction | 10 | ||||
SNPE Workflow | 10 | ||||
Supported Chipsets / Supported Network Layers | 3:55-4:40p.m | 5 | |||
User-defined Operations (UDO) Workflow | 30 | ||||
Limitations | 5 | ||||
CPU vs GPU vs DSP | 5 | ||||
Tea break 4:40 - 4:50 p.m | |||||
Run SNPE on Linux Machine | 4:50-5:20p.m | 10 | |||
Building and Running the C++ Application on ARM Android | 10 | ||||
Thermal Measurement | 5 | ||||
Solve Problem with SNPE | 5 | ||||
2.3.3 Q & A | Q & A | 5:20~ | - | ||
Day3 | 3.1 Getting Started with TensorFlow | 3.1.1 TensorFlow Overview | 9:30 - 10:30 a.m. | 10 | |
3.1.2 Low level API | 10 | ||||
3.1.3 Middle level API | 10 | ||||
3.1.4 High level API: Keras | 10 | ||||
20 | |||||
3.2 Basic Knowledge of Object Detection | 3.2.1 Overview | 10:30 - 11:00 a.m | 10 | ||
3.2.2 Performance metrics | 20 | ||||
3.2.3 Traditional methods for Object Detection | 11:00 - 12:00 a.m | 20 | |||
3.2.4 Two-stage detection | 20 | ||||
3.2.5 One-stage detection | 20 | ||||
Lunch 12:00-13:00 | |||||
Q&A, Open Discussion 13:00-13:30 | |||||
3.2.6 Hands-on Object Detection | 1:30 - 2:30 p.m | 60 | |||
3.3 SNPE Training Part 3 | Review | 2:30 - 3:00 p.m | 5 | ||
SNPE Benchmarking | 25 | ||||
AI demos – Object Detector Demo | 3:00 - 3:15 p.m | 15 | |||
Tea break 3:15 - 3:25p.m | |||||
AI demos – Face Recognition | 3:25 - 4:00 p.m | 25 | |||
Solve SNPE Problem Skills | 10 | ||||
Q & A, Others | 4:00 ~ |
| |||


