線上活動科技學習

Qualcomm AI Training

1,395
7
2020.12.02 (Wed) 09:30 - 12.04 (Fri) 17:30 (GMT+8)加入行事曆

此活動為線上活動,購票後可於票券頁進入直播連結

Microsoft Teams

線上活動

此為線上活動,不受地點限制,輕鬆享受活動樂趣!

Microsoft Teams

近年AI已進入人類的生活,跨領域的應用也蓬勃興起。為協助台灣產業因應AI帶來的挑戰,台北市電腦商業同業公會(TCA)與Qualcomm高通公司合作辦理AI訓練課程,針對台灣中小企業與新創團隊提供一系列的三天的AI免費線上訓練課程,2020年12月2日至12月4日,推廣AI技術的基本知識應用,協助台灣中小企業與新創企業領先於這波先進技術中的浪潮!
近年AI已進入人類的生活,跨領域的應用也蓬勃興起。為協助台灣產業因應AI帶來的挑戰,台北市電腦商業同業公會(TCA)與Qualcomm高通公司合作辦理AI訓練課程,針對台灣中小企業與新創團隊提供一系列的三天的AI免費線上訓練課程,2020年12月2日至12月4日,推廣AI技術的基本知識應用,協助台灣中小企業與新創企業領先於這波先進技術中的浪潮!

線上活動

此為線上活動,不受地點限制,輕鬆享受活動樂趣!

Microsoft Teams

活動簡介

Qualcomm AI Training Webinar // 高通AI線上訓練課程

近年AI已進入人類的生活,跨領域的應用也蓬勃興起。為協助台灣產業因應AI帶來的挑戰,台北市電腦商業同業公會(TCA)與Qualcomm高通公司合作辦理AI訓練課程,針對台灣中小企業與新創團隊提供一系列的三天的AI免費線上訓練課程,2020年12月2日至12月4日,推廣AI技術的基本知識應用,協助台灣中小企業與新創企業領先於這波先進技術中的浪潮!

課程資訊

時間:9:30AM to 5:30PM,2020年12月2日-4日(共三天)
對象:中小企業、新創團隊
費用:免費
語言:中文
主辦單位:Qualcomm高通公司
協辦單位:台北市電腦商業同業公會
聯絡人:台北市電腦公會02-25774249 分機825 李小姐、分機847 陳先生

註1. 主辦單位將審核您的報名,您需收到報名確認信才算報名成功,主辦單位會再將寄發線上課程網址。
註2. 本次開放共35名額參加,主辦單位保有學員篩選與培訓內容調整之權利。
註3. 主辦單位將向成功報名的學員收取新台幣2,000元訂金,並至少參與1次報到點名,並填寫問卷者,主辦單位將於30工作天內全數退還訂金。
註4. 報名時請務必填寫您的中文姓名以及公司Email

12月2-4日 三日議程:

Day1

Opening Session

Opening Speech delivered by Qualcomm

930-935

5

 

Agenda Brief

935-940

5

 

1.0 Self-introduction by teachers and students

Teachers introduce themselves
Attendees give briefs of who they are and what they are working on.

940-1000

20

 

1.1 Introduction to AI

1.1.1 AI: What? How? Where?

10:00 - 10:30 a.m.

30

 

1.1.2 Qualcomm AI

 

1.1.3 AI vs. Machine learning vs. Deep Learning

 

1.1.4 Different types of Machine Learning

 

1.1.5 Basic concepts in Machine Learning & Deep Learning

 

1.2 Quick Tour of Deep Learning

1.2.1 From ML to DL: What is deep learning?

10:30 - 11:10 a.m

20

 
 
 

1.2.2 Datasets of Deep learning: From public to custom

20

 
 

Tea break 11:10 - 11:20 a.m.

 

1.2.3 Infrastructure of Deep learning: From hardware to software

11:20 - 12:00 a.m

40

 
 
 
 

Lunch 12:00-1:00

 

Q&A, Open Discussion 13:00-13:30

 

1.2.4 History, Present and Future

1:30 - 2:30 p.m.

10

 
 

10

 
 

20

 
 
 
 

20

 
 

Tea break 2:30 - 2:40 p.m.

 

1.3.1 Review

Review

2:40-2:50p.m

10

 

1.3.2 Model Conversion and Demo

Hardware Preparation: AI Kit

2:50-3:00p.m

10

 

SoftWare Preparation: Part 1 SNPE SDK Development Environment Setup

3:00-3:25p.m

25

 

SoftWare Preparation: Part 2 SNPE Application Development Tools

3:25-3:45p.m

20

 

Tea break 3:45 - 3:55 p.m.

 

AI Demos - Object Detector Demo Converting Model

3:55-4:15p.m

20

 

AI Demos - Object Detector Run Demo

4:15-4:30p.m

15

 

1.3.3 Solve AI Problem Skills

Solve AI Problem Skills

4:30-4:40p.m

10

 

1.3.4 Homework, Q & A

Homework, Q & A

4:40~

-

 

 

Day2

2.1  Foundation of Deep Learning

2.1.1 Perceptron & Multilayer Perceptron

9:30 - 10:00 a.m.

10

 

10

 

2.1.2 Basic neuron layers

10:00 - 10:30 a.m.

20

 

2.1.3 Loss functions

10:30 - 11:00 a.m

15

 

2.1.4 Optimizer

20

 

10

 

2.1.5 Prevent Over-fitting in Deep Learning

11:00 - 12:00 a.m

20

 

30

 

 

Lunch 12:00-13:00

 

 

Q&A, Open Discussion 13:00-13:30

 

2.2 Building Deep Learning Model

2.2.1 Classic models

1:30 - 2:20 p.m

10

 

30

 

10

 

2.2.2 Hyper-parameters & Tuning Tricks

2:20 - 2:50 p.m

10

 
 

2.2.3 Fine-tune & Transfer Learnin

10

 

2.2.4 Data pre-process & Data augmentation

10

 
 
 

2.2.5 Hands-on - Keras_MNIST

2:50-3:00p.m

10

 

Tea break 3:00 - 3:15 p.m

 

2.3.1 Review

Review

3:15-3:55p.m

10

 

2.3.2 SNPE Training Part 2

An Image Classifiers Demo

10

 

SNPE Introduction

10

 

SNPE Workflow

10

 

Supported Chipsets / Supported Network Layers

3:55-4:40p.m

5

 

User-defined Operations (UDO) Workflow

30

 

Limitations

5

 

CPU vs GPU vs DSP

5

 

Tea break 4:40 - 4:50 p.m

 

Run SNPE on Linux Machine

4:50-5:20p.m

10

 

Building and Running the C++ Application on ARM Android

10

 

Thermal Measurement

5

 

Solve Problem with SNPE

5

 

2.3.3 Q & A

Q & A

5:20~

-

 

 

Day3

3.1 Getting Started with TensorFlow

3.1.1 TensorFlow Overview

9:30 - 10:30 a.m.

10

 

3.1.2 Low level API

10

 

3.1.3 Middle level API

10

 

3.1.4 High level API: Keras

10

 

20

 

3.2  Basic Knowledge of Object Detection

3.2.1 Overview

10:30 - 11:00 a.m

10

 

3.2.2 Performance metrics

20

 

3.2.3 Traditional methods for Object Detection

11:00 - 12:00 a.m

20

 

3.2.4 Two-stage detection

20

 

3.2.5 One-stage detection

20

 

Lunch 12:00-13:00

 

Q&A, Open Discussion 13:00-13:30

 

3.2.6 Hands-on Object Detection

1:30 - 2:30 p.m

60

 

3.3 SNPE Training Part 3

Review

2:30 - 3:00 p.m

5

 

SNPE Benchmarking

25

 

AI demos – Object Detector Demo
Part 1 : Get Camera Stream by Camera2
Part 2 : JNI Interface
Part 3 : Integrating SNPE

3:00 - 3:15 p.m

15

 

Tea break 3:15 - 3:25p.m

 

AI demos – Face Recognition

3:25 - 4:00 p.m

25

 

Solve SNPE Problem Skills

10

 

Q & A, Others

4:00 ~

 

 
avatar

InnoVEX

verified

Qualcomm AI Training

2020.12.02 (Wed) 09:30 - 12.04 (Fri) 17:30 (GMT+8)

loading